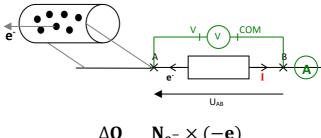


Énergie et circuit électrique

Courant électrique


1. Porteurs de charge et déplacement

Les conducteurs sont des récepteurs qui contiennent des porteurs de charge libres de se déplacer. Ce sont des électrons libres dans le cas des métaux, et des ions (anions et cations) dans les solutions.

Lorsque l'on soumet un conducteur à une tension, les charges négatives (électrons ou anions) se déplacent vers la borne positive du générateur (en restant dans leurs milieux respectifs, fil ou solution). Les cations eux, se déplacent dans la solution vers la borne négative du générateur.

2. Intensité du courant électrique

L'intensité du courant électrique correspond à la quantité de charges électriques qui passent par la section d'un circuit électrique par unité de temps.

$$I = \frac{\Delta \mathbf{Q}}{\Delta \mathbf{t}} = \frac{\mathbf{N}_{\mathbf{e}^{-}} \times (-\mathbf{e})}{\Delta \mathbf{t}}$$

I : intensité du courant traversant le conducteur, en ampères (A)

 Δt : durée de la mesure, en secondes (s)

 ΔQ : variation de la charge pendant la durée Δt , en coulombs (C)

Ne : nombre d'électrons traversant le conducteur pendant la durée Δt

e : charge élémentaire

Rg: Charge d'un électron : $-e = -1, 6.10^{-19}$ C

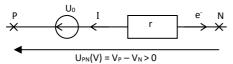
I va dans le sens des potentiels décroissants pour un conducteur.

I donne l'orientation du sens conventionnel du courant.

 U_{AB} : tension (ou différence de potentiel électrique Vi) entre les bornes du conducteur en volts V

 $U_{AB} = -U_{BA} = V_A - V_B > 0$

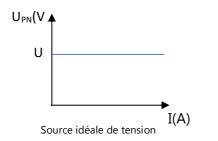
Source réelle de tension

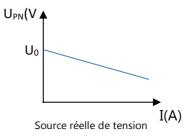

1. Définition

Une source de tension est un dipôle actif qui convertit en énergie électrique une autre forme d'énergie (chimique (pile), mécanique (dynamo), rayonnement (photopile)) pour la céder à un circuit.

2. Modélisation d'une source réelle de tension

- Une source idéale de tension fournit une tension U₀ constante entre ses bornes quelle que soit I.
- Une source réelle de tension peut être modélisée par le montage équivalent suivant :


Tension aux bornes de la source réelle : $\overbrace{U_{PN}}^{en\ V} = \overbrace{U_0}^{en\ V}$ - rI


 $Rq: r: Résistance interne de la source réelle, en ohm (\Omega)$

 U_0 : Tension « à vide » de la source réelle lorsqu'elle ne délivre aucun courant (aucun récepteur branché à ses bornes). Elle correspond à la tension d'une source idéale. U_0 est fréquemment notée E et porte le nom de force électromotrice.

3. Caractéristiques d'une source de tension

La caractéristique intensité-tension d'un dipôle est la représentation graphique de la tension à ses bornes en fonction du courant qui le traverse.

Rq: Pour une source réelle de tension, le coefficient directeur de la droite correspond à la résistance interne r.

Puissance et énergie électriques

1. Puissance electrique d'un dipôle

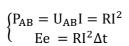
Puissance électrique P reçue ou fournie par un dipôle :

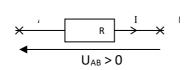
P = UI

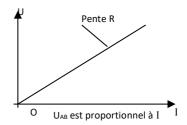
P: puissance, en W

U: tension aux bornes du dipôle, en V

I : intensité du courant électrique qui traverse le dipôle, en A


Une source de tension fournit de la puissance électrique à un circuit.


Cette puissance est égale à la somme des puissances des récepteurs contenus dans le circuit.


2. Cas d'une résistance, loi d'Ohm

Une résistance vérifie la loi d'Ohm:

$$\widetilde{U_{AB}} = \underbrace{R}_{en \Omega} \times \widetilde{I}$$

RI² : Puissance thermique ou de rayonnement cédée au milieu extérieur par <u>effet Joule</u>.

L'effet Joule est un échauffement dû aux interactions entre les atomes de la résistance et les électrons qui circulent. Il est responsable des pertes en ligne, échauffements... mais aussi des lampes, chauffages électriques....